Extending the REA-DSL by the Planning Layer
of the REA Ontology

Dieter Mayrhofer and Christian Huemer

Business Informatics Group, Vienna University of Technology, Austria
{mayrhofer, huemer}@big.tuwien.ac.at

Abstract. The Resource-Event-Agent (REA) ontology is a powerful
and well accepted approach towards the design of accounting information
systems (AIS). However, the REA notation - that is currently based on
class diagrams - is not very intuitive for business experts. Accordingly,
we aim at a REA domain specific modeling language that facilitates
the communication between business experts and IT professionals. In
previous work we defined the REA-DSL operational layer reflecting ac-
tual business events which ”have occurred” or ”are occurring”. In this
paper we extend the REA-DSL by the planning layer capturing what
future events ”are scheduled” or ”are planned” by commitments. Now,
our REA-DSL covers all basic concepts to describe a full accounting in-
frastructure. The REA-DSL may serve as a solid basis for generating a
conceptual AIS data model - which is subject to future work.

1 Introduction

According to Romney and Steinbart an accounting information system (AIS) is a
system that collects, records, stores, and processes financial and accounting data
to produce information for decision makers [1]. They define the following main
functions of an AIS: (i) collect and store data about events, resources, and agents;
(ii) transform that data into information that management can use to make
decisions about events, resources, and agents; and (iii) provide adequate controls
to ensure that the entity’s resources including data are available when needed
as well as accurate and reliable. Accordingly, financial and accounting related
data is analyzed, prepared, calculated, and visualized in order to provide insight
into a company’s current financial status as well as of its historic activities.
Furthermore, the data helps to predict the financial future of a company and,
thereby, helps managers in their decision making.

In order to create a useful and meaningful AIS, the data structure and user
interface has to reflect the economic phenomena on which companies base their
business. Thus, it is essential that the business people providing the requirements
can unambiguously communicate with the I'T professionals which are in charge of
creating the AIS. Business ontologies - providing abstract descriptions of enter-
prises in their business context - may be used as a language for communicating
these requirements between domain experts and IT staff.

The most prominent business ontology for accounting information systems
is the Resource-Event-Agent (REA) ontology developed by McCarthy, Geerts

and others [2]. REA is a widely accepted framework for the design of a concep-
tual model of the accountability infrastructure of enterprise information systems.
Originally, REA targeted the resource flows within and between companies de-
scribing what is currently occurring and what has occurred in the past. This is
known as the operational layer. Later it was extended by a planning layer and
a policy layer capturing what should, could, or must be occurring sometime in
the future [3,4].

Today, REA may be considered as a powerful business ontology capturing all
relevant data to generate the conceptual design of an AIS. However, we feel that
it does not deliver an appropriate representation of the business model which
can be understood not only by the IT expert, but also by the business expert.
Thus, the use of REA in the design of AIS does not yet reach its full potential.
We argue, that an easy-to-understand REA notation will accelerate, streamline,
and reduce the costs of the AIS development process.

Consequently, we started the endeavor of developing a domain specific model-
ing language for the REA concepts which aims at both (i) delivering an intuitive
REA notation and (ii) retaining the full expressiveness of the REA concepts.
Similarly to the development of REA itself, our REA-DSL started on the op-
erational layer only [5]. In this paper, we are going to extend the REA-DSL
by concepts of the planning layer and types of the policy layer. Once we have
consider all REA layers, we are able to derive a conceptual data model, e.g. an
entity-relationship diagram, for the resulting AIS. However, this transformation
process is out of scope for this paper and will be addressed in future work.

The remainder of this paper is structured as follows: In Section 2 we give a
brief introduction of the REA ontology with focus on the commitment and type
artifacts. An example of the REA-DSL is given in Section 3. Section 4 defines
the extended REA-DSL. The evaluation is provided by our tool in Section 5 and
we conclude the paper by the summary in Section 6.

2 Related work on REA

When developing a domain specific modeling language for REA, related work fo-
cuses more or less only on papers related to REA. A comparison with alternative
approach for a domain specific modeling language is impossible, since best to
our knowledge no such efforts have been published. Accordingly, we concentrate
in the following on REA and in particular on the REA planning layer and types
of the policy layer.

REA was originally proposed as a reference framework to conceptualize the
resource flows within and between firms in terms of what is currently occurring
or what has occurred in the past [2]. Accordingly, REA focuses on the economic
exchanges as the central unit of analysis. Instead of representing these exchanges
with double-entry bookkeeping artifacts (e.g. debits, credits, accounts), REA
proposes concepts and patterns to derive semantic models of economic exchanges
and transformations [6].

Following its name, REA is based on the three main concepts: economic
resources, economic events, and economic agents. It should be noted that for a

better readability we drop the prefix term economic for the remainder of this
paper. Basically, one or more resources are exchanged between usually two (but
in theory also more) agents at well defined events. A cornerstone of REA is also
the concept of duality, which means that usually one event (or in theory a set of
events) is compensated by another event (or set of events). An example on the
instance level may be: On the 30 November 2011 a sale (event) occurs, where
the salesman Joe (agent) with the help of the shop assistants Mary and
Wendy (agents) give 50 pounds of tuna fish (resource) and a fishing rod
(resource) to their customer Fred (agent). The sale (event) is compensated by
the payment (event) which happens right after Fred (agent) pays the amount of
700 Euros to the cashier Mark (agent).

REA does not model the individual instance on MO, but analyses an enter-
prise on the model layer M1. Accordingly, the REA model defines the schema
for the above mentioned instance from the perspective of the seller using the
concepts of resource, events, agents, duality, stockflow, and participation. The
relationships between these concepts are formalized on the M2 layer as a meta
model which we already published at CAiSE 2011 [5].

The above mentioned example demonstrates that the original REA [2,7, 6] is
capable to record events that have already happened. As mentioned earlier, AIS
should provide management an insight into a company’s current financial status
in order to make proper decisions. Usually, the financial status depends not only
on the past, but also on commitments that the company has already made for
the (near) future. Thus, it is desirable to extend REA by such commitments
and internal plans to fulfill these commitments. Accordingly, REA should be
able to capture the following example of a reservation: On 2 November 2011 the
salesman Joe commits himself - as a particular salesman - and two (not yet
known by name) shop assistants to give customer Fred at least 40 pounds
of tuna. In return, customer Fred commits himself to pay a (not yet known by
name) cashier. It is easy to recognize, that the above mentioned actualization
of the events is in-line with the commitments, even if the actualization overfulfills
the commitment by additional 10 pounds of tuna and the fishing rod.

In order to accommodate such a scenario REA has been extended by a plan-
ning and policy layer [3,8, 4]. These layers cover economic activities that should,
could, or must happen in a company and are, thus, relevant for planning and
controlling activities. The extension allows to model the previous commitment
example on an abstract level on M1. Therefore, new concepts are introduced on
the meta model layer M2. The most central concept is a legal commitment. The
concept commits associates the agent who does the commitment to the commit-
ment. Reciprocity is a relationship between commitments. The concept of fulfill
links commitments and associated events. Reserve is used to associate resources
or agents to commitments. Furthermore, REA introduces the typification to sup-
port the planning and policy layer. From the above example it is evident that in
some cases one may already refer to a particular, yet-known agent (such as the
salesman Joe), and in other cases one may only refer to the type of agent (such
as shop assistant), because it is not-yet-known in person. This is reflected by
the M2 concept of agent type. Corresponding concepts exist for event types and

resource types. An overview of the REA M2 meta level concepts is presented in
Figure 1.

Operational Layer Planning Layer Policy Layer
Resource reserve tr\géiig?(a)gi?;‘ specify Resou rceType |
stock-flow! fulfill policy |

dualiy—| Event [— Commitment I%::a EventType |

pafticipate : Teserve " | olic
Agent | ST ypification ™ AgentType | \

typification

Fig. 1. REA Meta Model

Accordingly, we aim at supporting all these concepts in our REA-DSL. Sim-
ilarly as the papers on the planning and policy layer [3,8,4] extend the basic
REA concepts [2,7, 6], this paper extends our first paper on the basic REA con-
cepts [5]. In addition, our work in this paper was influenced by Gailly et al. [9].
They already tried to formalize types and commitments but did not provide a
domain specific language and separate views for it.

3 REA-DSL Example

Before going into all the theoretical details when explaining the meta model
of our REA-DSL, we start illustrating our results by a simple, but still realistic
example. We feel that from an educational perspective it is worthwhile to get first
an overview by means of the example before wading through all the meta model
foundations. One may argue that it is necessary that one has to understand the
concepts prior to reading an example - but we feel that our DSL notation is
rather intuitive also for the non-expert. Accordingly, the examples should help
also the non-expert to get an impression of what we are hunting for. The example
in this paper is based on Sy’s Fish - an example that was used also by Geerts
at al. [7] to demonstrate REA.

Example business model. Sy’s Fish purchases fishes from the fish market.
He sells three different kind of fishes: carp, trout, tuna. Additionally, he acquires
products from a factory: books and fishing rods. The fishes and products are
transported to Sy’s Fish by leased trucks. At Sy’s Fish all the fishes get cleaned.
The products and fish are then sold to customers in order to make profit. To be
able to accomplish all tasks, Sy’s Fish employs a couple of employees, which can
either be a salesman, shop assistant, or cashier.

Modeling REA. The REA-DSL consists of five different views: (i) agents
view, (ii) resources view, (iil) value chain view, (iv) planning view, and (v) oper-
ational view. In the following, we will model these views one by another:

Agents view. We start modeling the business model with the REA-DSL by
defining the different agents. In the agents view (cf. Figure 2a) the agents inside
the company are depicted on the left side with the white head stick figures.
The general agent is an employee, which can either be a salesman, a shop
assistant, or a cashier. The outside agents are depicted as black head stick
figures. Sy’s Fish does business with the outside agent customer. For the moment

we forget about other outside agents which are involved in the overall process,
but are not relevant for understanding the example.

Resources View. Next, we define all resources which need to be tracked
and recorded in Sy’s Fiish company. These resources are depicted by the shape of
a drop in Figure 2b. Resources which can be identified individually are marked
by a solid drop, whereas bulk resources where the individual real world objects
cannot (or need not to) be identified are marked by dashed drops. Accordingly,
the resource product is a solid drop. Products can be categorized into books and
fishing rods. Another resource is cash. Cash is a bulk resource that appears
as a dashed drop. Evidently, Sy’s Fish cannot track each single coin or bill and
therefore, only the whole amount of cash is of interest. Another bulk resource is
fish. Fish can be categorized into carp and trout.The last resource is truck,
which is modeled as a solid drop.

o :é Commit Layer Plan Layer |
E % ! ! E ’ \ ’ . n
: \\ ’ \ ll'l'

Employee Customer
Salesman

v

Salesman Shop Assistant Cashier

Salesman g0 Customer
Assistant

Order (Contract)

X

Customer

PayCommitment Cashier Customer

Fig. 2. (a) Agent View, (b) Resource View, and (c) Planning View

Value chain view. In the next step a high level overview of Sy’s Fish
business model is provided by depicting it in a value chain view (cf. Figure 3).
The value chain contains economic activities that create higher value by value
transfers with external partners or transformations inside the company. Usually,
resources created by one value activity serve as input to another one. In order to
keep Sy’s Fish value chain as simple as possible we omit to depict the resource
labor which is naturally input to all economic activities.

Fish and products are purchased with cash in the two value activities fish
buying and product buying. The products and fish are transported to Sy’s
Fish by a truck leased for cash in the truck acquisition value activity. The
fish is cleaned in the cleaning value activity and then the products and fish
are sold for cash in the selling value activity.

Planning view. Each value activity defined in the value chain view will be
refined in the planning view. For this example we just elaborate on the selling

Product
|—> ProductBuying }Q o Cash
Fish l Q Product

(i i Fish , Fish
FishBuying ’— Transport ’— Cleaning l— Selling Cash
() Truck
I—)TruckAcquisition Cash

Fig. 3. Value Chain View

value activity which is depicted in Figure 2c. The resulting contract is a 2 x 2
matrix. The top covers a commitment leading to a decrease in resources, and
the bottom defines the compensating commitment leading to an increase in
resources. Orthogonally, the left hand side defines who does the commitment
and the right hand side defines what the commitment is about and who is going
to fulfill it.

The contract is an order and contains two commitments: the salesman com-
mitting in the sell commitment to engage in the sale event in the future and
the customer committing in the pay commitment to engage in the payment
events in the future. A concrete salesman will participate in the future sale
of the resources fish and product. Since more than one fish and more than
one product are potentially sold, their shapes appear as stacks of drops. As
mentioned before fish are bulk resources with dashed drops and products are
individually identifiable with solid drops. Note, a solid drop in the commitment
means also that the individual product being part of the future sale is exactly
defined at the time of the commitment. If only the type of the product is speci-
fied in the commitment it has to appear a dashed drop (or stack of dashed drops
in case of multiple products). Furthermore, the salesman will be supported
by one or more shop assistants (depicted as a stack of dashed stick figures)
which are not known at the time of the commitment. These shop assistants
will get concrete when the sale event happens. In the reciprocal commitment,
the customer commits himself to pay in cash to a not-yet-known cashier. The
staple of payment events signifies that there is the option of multiple (partial)
payments.

In this example we do not further elaborate on the operational view which was
the main focus of our CAIiSE 2011 paper [5]. The interested reader may refer to
this paper. However, it should be noted that one may semi-automatically transfer
the right hand side of the contracts in the planning view to the operational view.

4 REA-DSL Formalization

Having introduced Sy’s Fish example, we are now elaborating on the formal
concepts which this example is based upon. These concepts are represented in
the REA-DSL meta model on the M2 layer. We concentrate on the DSL meta
model of the planning view. Due to space limitations we do not describe the
meta model of the agent view as well as the the resource view, the operational

view, and value chain view, which we slightly extended for the incorporation of
types but besides that already covered in [5].

In [5] we have described exchanges including events in the operational view.
These exchanges often do not happen unexpected. There can be commitments
to fulfill events in the future. Such commitments can for example be an order
to buy fish or a schedule to clean fish. Thus, events happening in the fu-
ture are planned beforehand. The major contribution of this paper is to add
this commitment concept together with types to the REA-DSL by providing an
additional view called the planning view. This view makes use of resources and
agents defined in the resource and agent view. Following we propose the planning
view meta model (cf. Figure 4) and its concrete syntax (cf. Figure 5). Classes in
the meta model which also have a corresponding stencil in the concrete syntax
of the abstract model are marked with a numbered circle.

o Contract Schedule

1
CommitmentSeries CommitLayer 1
1
0.%
1
Commitment]>—1 Fulfil
11 or 1 Event 1

e ' ; -
1 RESelVEF‘amc\pa(ian EventType

Commits 0.0 o
EventTypeSeries
1

AgentType

sourceTypeSeries

Fig. 4. Commitment Meta Model

Reciprocity. The root element of the planning view is the reciprocity. A
reciprocity is analog to the duality in an operational view. The duality connects
the incrementing entities with the decrementing entities. Likewise, reciprocity
connects the incrementing commitments with the decrementing commitments in
the planning view. The reciprocity may be associated with a duality which refers
to the corresponding duality in the operational view and vice versa. Thus, it is
the link between the planning view which plans future events and the operational
view which shows the events at the time of execution. Notice, if the reciprocity is
conceptually congruent to the duality, the duality does not have to be modeled
separately.

Reciprocity can either be a contract (1) or a schedule. The abstract example
shows a contract (1) (indicated by contract in the brackets) with the name

° Commit Layer e Plan Layer
o |/ X-) o
{ ElType | R1
Insidel | - ’\
@(_R @ @ I/ R2 @
e -:I: ‘.‘ Type
’ ~ . 4

ComDec Inside2 Type Inside3 Outsidel -

Q + Contractéame (Contract) |Q 4‘
- ~~I
|
m |
N
=
P
(0] |
z
[}

Outsidel | ‘--q-----------

@ Inside4 . I‘r'1§ide5'
Outsidel i
Cominc Series Type Series Outsidel

Fig. 5. Commitment Abstract Example

contract name. In the case of a schedule the term in the brackets would be
schedule. If the reciprocity is a contract the corresponding duality in the oper-
ational view has to be a transfer and if it is a schedule the corresponding duality
has to be a transformation, respectively.

Increment plan and decrement plan. The reciprocity consists of two
plan entity sets called increment plan (2) and decrement plan (3). The increment
plan is depicted as the lower swimlane annotated by a plus sign and contains
all the commitments and related event types which will lead to an increment of
resources in the future. Accordingly, the decrement plan is depicted as a swimlane
annotated by a minus sign and contains all the commitments and event types
which will lead to an decrement of resources in the future.

The increment plan (2) and decrement plan (3) are divided into two layers:
the commit layer (4) on the left side and the plan layer (5) on the right side.

Commit layer. In general, the commit layer contains the commitment (6)
which is made on future events defined by event types (8) in the plan layer.
One agent legally commits to the commitment (6) which is depicted by a scroll.
Agents can either be inside agents (7) or outside agents (13). A commitment on
the decrement plan always has to be in reciprocity with a commitment on the
increment plan in order to provide the rational of individual economic activities.
In a contract, an inside agent (7) has to commit to the commitment in the
decrement plan and an outside agent to the commitment in the increment plan.
As for a schedule, only inside agents can commit to the commitment. These
restrictions are defined by OCL constraints on the meta model. In the abstract
example a commitment comdec (6) is made in the decrement plan (3) (upper
lane) by the inside agent inside 1 (7a) to execute event types (8) specified
in the plan layer in the future. In return, a commitment cominc (18) is made
by the outside agent outside 1 (13d) in the increment plan (2) (lower lane) to
execute event types (8) specified in the plan layer in the future. The commitment
cominc (18) is actually a commitment series depicted by a stack of scrolls (18).

The special meaning behind a commitment series is, that many commitments
can be fulfilled by one event (e.g., two orders are fulfilled by a joint delivery).

Plan layer. The plan layer (5) on the right side in general specifies the type
of future events, their agents, and resources being involved. These future events
are defined in the corresponding duality of the operational view.

Event types. The plan layer can contain one-to-many event types (8) de-
picted as dashed hexagons. Contrary to the operational view where events are
specified, in the planning view only event types are specified (e.g. regular sale
type). The reason for this is, that at the time of planning the events, the actual
future events cannot be referred to, because they simply do not exist yet. Thus,
only the event type can be referred to. Instead of event types also the sub type
event type series (12) depicted by a dashed stack of hexagons might be specified
in a plan layer. An event type series specifies one-to-many event types of the
same kind (e.g. a payment being split up in many partial payments). The event
type is related to the event in the duality which fulfills a commitment (6) or
commitment series (18) in the future. A commitment can be fulfilled by one-to-
many events and one event can fulfill zero-to-many commitments. This means,
that for a commitment, there must be at least one related event in the opera-
tional view, but for an event, there does not necessarily exist a commitment. In
the abstract example E1 type (8a) and E2 type (8b) are regular event types
and E3 Type Series (12) is an event type series. Accordingly, an event E1 and
E2 as well as an event series E3 Series have to exist in the operational view.

Resources and resource types. Fvent types are connected to at least one
resource (9) or resource type (10) by reserve stock-flows. These resources/resource
types refer to resources/resource types in the resource view. If the event type
resides on the increment plan (2) the resource will be gained in the future. Oth-
erwise, on the decrement plan (3) the resource will be used in the future when
connected by a reserve use stock-flow and consumed when connected by a regular
reserve stock-flow.

A resource (9) connected to the event type (also called being reserved) spec-
ifies, that the exact identifiable resource is already known at the time of the
commitment (e.g. a product with a specific RFID code). Consequently, the ex-
act same resource is also referred to in the future event of the operational view.
It is depicted by a regular solid drop (cf. 9, R1) and references an identifiable re-
source in the resource view. Similar, a resource series (16) has the same meaning
for many resources (e.g., 3 books) and is depicted by a stack of solid drops (cf.
16, R5 Series). It also references an identifiable resource in the resource view.

A resource type (10) connected to the event type (also called being specified)
can have two specific meanings. Either the referenced resource in the resource
view is an (i) identifiable resource or it is a (ii) bulk resource. In the case of
an identifiable resource (i), in the future event of the duality a specific resource
of this type will be associated. However, at the time of the commitment the
exact identifiable resource is not-yet-known (e.g. booking a double bed room in
a hotel, but the specific room with number 704 will be assigned at the time of
arrival). This resource is depicted by a dashed drop (10, R2 Type). Similar, a
resource type series (14) has the same meaning for many resource types (e.g.,

10 tons of tuna and 12 tons of carp) and is depicted by a stack of dashed drops
(14, R3 Type Series). In the case of a referenced bulk resource (ii) the actual
resource can never be individually identified. Thus, it only defines the quantity
of a resource type to be in a stock-flow of a future event (e.g. ordering 1000
liters of heating oil). Similar, a resource type series defines the quantity of many
resource types to be in a stock-flow of a future event (e.g. ordering 1000 liters
of heating oil and 70 liters of diesel).

Agents and agent types. Agents (series) and agent types (series) are re-
served /specified for participation in event types (8) through reserve participation
links. Reserved agents mean, that the individual agent can already be defined at
the time of the commitment and are depicted by a solid stick figure (7b, Inside
3, 13, Outside 1). On the other hand, specified agent types mean, that only the
type of agent can be defined at the time of the commitment and are depicted by
a dashed stick figure (11, Inside 2 Type); once the commitment is fulfilled by
a future event, this agent type becomes a concrete known agent. An example is
specifying that two arbitrary shop assistants are needed in the future event,
but we do not know the exact individuals yet. An agent series/agent type series
always refers to one-to-many agent/agent types and is depicted as a stack of
stick figures (15, Inside 4 Series, 17, Inside 5 Type Series).

Event types of schedules have at least one inside agent (7)/inside agent type
(11) and no outside agents. On the other hand, event types of contracts (1)
additionally can have outside agents (13). There is usually the same single outside
agent used for every commitment and event type. However, in some rare cases
there might be different outside agents as well as even outside agent types.

5 REA-DSL Evaluation

The development of REA has been following the design science approach in IS
by Hevner [10]. In our work the designed artifact is the REA-DSL comprising a
well-defined meta model and an appropriate graphical notation. For the design of
the REA-DSL we followed the methodological steps for designing domain specific
languages suggested by Strembeck and Zdun [11]: Accordingly, we started with
(1) the identification of elements in the REA ontology. Next, we underwent
a number of revision cycles of (2) deriving the abstract syntax of the REA
model including the core language model and the language model constraints
and (3) defining the DSL behavior, i.e. determining how the language elements
of the DSL interact to produce the intended behavior. Once we had reached a
stable state, we defined the DSL concrete syntax (4). Finally, we implemented a
modeling tool support for the DSL.

With respect to evaluation we (i) demonstrated the technical feasibility by
means of a tool implementation, (ii) performed a functional test based on existing
REA models, and (iii) conducted interviews with experts. The tool is based on
the Microsoft Visual Studio 2010 Visualization € Modeling SDK. The REA-DSL
tool incorporates the REA-DSL meta model as presented in this paper and in
our previous paper [5]. In addition, custom code enables to apply additional
constraints to the REA-DSL models to adhere to the REA rules.

In the functional test we demonstrated that the REA-DSL is able to address
all REA concepts in an appropriate and correct manner. For this purpose we
took as input 32 example models which were modeled according to the class-like,
original REA representation. Then, we modeled these 32 example models with
the REA-DSL by means of our REA-DSL modeling tool. This task helped a lot
in the refinement and adjustment of the REA modeling tool. Finally, we were
able to describe all 32 models in the REA-DSL. It follows, that even if we have
not conducted a new case study, we were able to represent ”old” case studies -
or to be more precise data of ”old” case studies - in the REA-DSL.

Eventually, we consulted different experts on our results. Most important we
discussed our results with the founder of REA — William McCarthy — on weekly
conference calls and incorporated his feedback. Furthermore, we consulted three
experts in REA and twelve experts in conceptual modeling with respect to the
intuitivity of our graphical notation. We showed them one and the same example
in the class-like, original REA representation as well as in the REA-DSL. All the
experts agreed that our REA-DSL notation is much more intuitive to describe the
underlying business semantics and, thus, may better serve the communication
between business experts and IT staff.

6 Summary and Future Work

The Resource-Event-Agent (REA) ontology is a well accepted approach for de-
veloping conceptual models for accounting information systems (AIS). The REA
concepts are based on well established concepts of the literature in economic
theory - which is certainly one of the strengths of REA. However, REA leaves
space for diverging interpretations of the relationships between core concepts.
Even worse, REA has no dedicated representation format and, thus, no graph-
ical syntax. This is a major shortcoming given its goal to serve as a language
for communicating requirements between domain experts and IT staff. Based on
these shortcomings we started to develop a domain modeling language for REA
that comes with both an unambiguous meta model definition and an intuitive
graphical notation. Our first step concentrated on the REA operational layer
[5]. This paper extends our previous work by adding concepts of the policy and
planning layer to the REA-DSL.

In this paper we proposed extending the domain specific language REA-DSL
by commitments and types of the REA policy and planning layers. REA has its
roots in the accounting discipline and was extended to a business modeling on-
tology over the years. Before the REA-DSL was introduced by us in Sonnenberg
et al. [5], the REA ontology lacked a dedicated representation built upon a pre-
cise formalization. These limitations are tackled by the REA-DSL. However, up
to now the REA-DSL just incorporated the core REA concepts resource, event,
and agent. The most significant new concepts are commitments, the typification
of agents, resources and events, as well as the concept of bulk resources. Com-
mitments define a legally binding obligation to engage in future events. Types
can be seen as a grouping of objects with the same properties and can be refer-
enced in commitments if the actual object is not known. Bulk resources refer to

resources where the individual resource is not identifiable and traceable. All new
concepts have been added to our REA-DSL modeling tool which now covers the
operational layer, the planning layer and types of the policy layer.

The ultimate goal of our approach is a business-driven database design or,
in other words, the transformation of the REA-DSL artifacts to a conceptual
data model for AIS. Accordingly, our future work will add the concepts of at-
tributes and primary keys to resources, events, agents, commitments, etc. Once,
this is accomplished transformation rules between the REA-DSL and Entity-
Relationship-Diagrams or class diagrams have to be specified. We have already
started to work on these issue and first results are very promising. Furthermore,
we want to extend the REA-DSL by the concept of terms to model exceptions.
Terms specify what happens, if a commitment is not fulfilled and therefore bro-
ken. Imagine ordering a fish and it is not delivered at the right time specified
in the commitment. In this case terms apply and specify additional events such
as penalty payments or additional provided rebates. Once we have completed
the work on the conceptual data models and the concept of terms we want to
conduct a real world case study by means of the REA-DSL tool.

References

1. Romney, M., Steinbart, P.: Accounting Information Systems. Pearson Education,
Limited (2011)

2. McCarthy, W.E.: The REA Accounting Model: A Generalized Framework for
Accounting Systems in a Shared Data Environment. The Accounting Review 57(3)
(1982)

3. Geerts, G.L., McCarthy, W.E.: An Ontological Analysis of the Economic Primitives
of the Extended-REA Enterprise Information Architecture. International Journal
of Accounting Information Systems 3(1) (2002) 1 — 16

4. Geerts, G.L., , McCarthy, W.E.: Policy-Level Specification in REA Enterprise
Information Systems. Journal of Information Systems 20(2) (2006) 37-63

5. Sonnenberg, C., Huemer, C., Hofreiter, B., Mayrhofer, D., Braccini, A.: The REA-
DSL: A Domain Specific Modeling Language for Business Models. In: Proceedings
of the 23rd International Conference on Advanced Information Systems Engineer-
ing (CAiSE 2011), LNCS 6741, Springer (2011) 252-266

6. Geerts, G.L., McCarthy, W.E.: An Accounting Object Infrastructure for
Knowledge-Based Enterprise Models. IEEE Intelligent Systems 14(4) (1999) 89-94

7. Geerts, G.L., McCarthy, W.E.: Modeling Business Enterprises as Value-Added
ProcessHierarchies with Resource-Event-Agent Object Templates. In: In Business
Object Design and Implementation, Springer-Verlag (1997) 94-113

8. Geerts, G.L., McCarthy, W.E.: The Ontological Foundations of REA Enterprise
Systems, Tulane (March 2005)

9. Gailly, F., Poels, G.: Towards Ontology-Driven Information Systems: Redesign
and Formalization of the REA Ontology. In: Proceedings of the 10th International
Conference on Business Information Systems. BIS’07 (2007) 245-259

10. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information
Systems Research. MIS Quarterly 28(1) (2004) 75-105

11. Strembeck, M., Zdun, U.: An Approach for the Systematic Development of
Domain-Specific Languages. Softw., Pract. Exper. 39(15) (2009) 1253-1292

